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Abstract

Introduction:Wecompared themachine learning-derived,MRI-basedAlzheimer’s dis-

ease (AD) resemblance atrophy index (AD-RAI) with plasma neurofilament light chain

(NfL) level in predicting conversion of early ADamong cognitively unimpaired (CU) and

mild cognitive impairment (MCI) subjects.

Methods:We recruited participants from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) who had the following data: clinical features (age, gender, education,

MontrealCognitiveAssessment [MoCA]), structuralMRI, plasmabiomarkers (p-tau181,

NfL), cerebrospinal fluid biomarkers (CSF) (Aβ42, p-tau181), and apolipoprotein E

(APOE) ε4 genotype. We defined AD using CSF Aβ42 (A+) and p-tau181 (T+). We

defined conversion (C+) if a subject progressed to the next syndromal stage within 4

years.

Results: Of 589 participants, 96 (16.3%) were A+T+C+. AD-RAI performed bet-

ter than plasma NfL when added on top of clinical features, plasma p-tau181, and

APOE ε4 genotype (area under the curve [AUC] = 0.832 vs. AUC = 0.650 among CU,

AUC= 0.853 vs. AUC= 0.805 amongMCI) in predicting A+T+C+.

Discussion: AD-RAI outperformed plasma NfL in predicting syndromal conversion of

early AD.
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Highlights

∙ AD-RAI outperformed plasma NfL in predicting syndromal conversion among early

AD.

∙ AD-RAI showed bettermetrics than volumetric hippocampalmeasures in predicting

syndromal conversion.

∙ Combining clinical features, plasma p-tau181 and apolipoprotein E (APOE) with AD-

RAI is the best model for predicting syndromal conversion.
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1 BACKGROUND

The risk of conversion to the next cognitive syndromal stage in sub-

jects with early Alzheimer’s disease (AD) varies with individuals. AD

is currently defined biologically by the presence of cerebral amyloid

β (Aβ) (A+) and tauopathy (T+).1 Among subjects harboring Aβ and

tauopathy who are cognitively unimpaired (CU) (i.e., preclinical AD) or

have mild cognitive impairment (MCI) (i.e., prodromal AD), less than

half of these subjects progress to the next syndromal stage within 5

years.2,3 Therefore, subjects with a low risk of conversion may require

only regular monitoring, whereas those with high risks may be prior-

itized for more aggressive interventions. Moreover, knowledge of the

rate of cognitive declinemay affect the design and interpretation of the

results of clinical trials for early AD.4 For example, a plausible reason

explaining the statistically significant benefit of high-dose aducanumab

observed only in EMERGE and not in ENGAGE could be related to the

rapid cognitive decline observed in the placebo group of EMERGE.5

Future trials should consider recruiting subjects with similar risks of

syndromal conversion.

Although neurodegeneration (N+) is a non-specific biomarker for

AD, studies have demonstrated that the presence of neurodegener-

ation in subjects with early AD predicts syndromal conversion. AD

subjects with neurodegeneration have more than two times higher

risk of syndromal conversion than those without it within 5 years.2

Early pathological study also showed that markers of neurodegener-

ation (e.g., loss of synapse) more significantly correlate with cognitive

performance than the quantity of Aβ plaques or tauopathy.6 Hence,

determining the severity of neurodegeneration is helpful in predicting

the risk of syndromal conversion in early AD.

Technological advancements have allowed in vivo detection of Aβ,
tauopathy, and neurodegeneration based on blood-based biomarkers.

Conventional methods for the detection of Aβ and tauopathy include

cerebrospinal fluid (CSF) assays and positron emission tomography

(PET).7 Neurodegeneration can be detected by PET, CSF, andmagnetic

resonance imaging (MRI). The cost and the relatively invasive nature

of PET and CSF assay hindered their uses in daily practice. Recent

studies have shown that plasma phosphorylated tau at threonine-181

(p-tau181) alone reflects both cerebral Aβ burden and tauopathy.8–10

For plasma neurofilament light chain (NfL), total tau (T-tau), and glial

fibrillary acidic protein (GFAP) levels, which reflect different aspects

of neurodegeneration, prior studies have shown that each of these

neurodegeneration biomarkers’ performance in predicting cognitive

decline differ.11–13 Plasma NfL was found to outperform plasma T-tau

and performed similarly to GFAP in predicting cognitive decline.14,15

Another study showed that combining plasma p-tau181 with plasma

NfL achieved the best performance in predicting syndromal conversion

fromMCI to dementia.16

Technological advancements have also been made in the develop-

ment of MRI-based neurodegeneration biomarkers. Medial temporal

lobe atrophy (MTA) or hippocampal atrophy is the most estab-

lished MRI-based neurodegeneration biomarker for AD.17,18 Recent

studies showed that a machine-learning derived index, namely the

AD-resemblance atrophy index (AD-RAI), outperformed hippocampal

measures in detecting early AD and in predicting conversion among

RESEARCH INCONTEXT

1. Systematic review: We reviewed the available scientific

literature on PubMed for articles examining neurode-

generation biomarkers in Alzheimer’s disease (AD). Both

plasma neurodegeneration biomarkers and MRI-based

neurodegeneration biomarkers showed diagnostic and

prognostic performance in early AD. However, no head-

to-head studies comparing the diagnostic performance

and prediction of disease progression between plasma

neurofilament light chain (NfL) and machine learning-

derivedMRI-based biomarkers.

2. Interpretation: Our findings suggested that MRI-based

Alzheimer’s disease resemblance atrophy index (AD-RAI)

outperformed plasma NfL and conventional volumetric

hippocampal measures in predicting syndromal conver-

sion of early AD by itself, or when combined with clin-

ical features, plasma p-tau181, and/or apolipoprotein E

(APOE) ε4 genotype. The model incorporating clinical

features, plasma p-tau181, and APOE ε4 genotype with

AD-RAI performed the best in predicting the syndromal

conversion of early AD subjects.

3. Future directions: Further validation of the model in a

large separate database is needed.

CU andMCI subjects.19,20 AD-RAI was designed to reflect the similar-

ity and severity of multi-brain region atrophy pattern characteristic of

AD.20–23 To date, AD-RAI is commercially available for use in clinical

setting. Although MRI is less accessible than blood-based investiga-

tions, it offers the advantage of co-detecting other brain lesions (e.g.,

whitematter hyperintensities), whichmay affect the risk of conversion

and eligibility for receiving anti-amyloid therapies for prodromal AD.24

Since plasma NfL and AD-RAI likely capture different aspects

of neurodegeneration,14 their performances in predicting syndromal

conversion among early AD likely differ. To date, there is no study com-

paring the relative performances and added values of incorporating

plasma NfL and AD-RAI into clinical prediction models. In this study,

we aimed to compare the performances of plasma NfL and AD-RAI on

top of a simple clinical model plus plasma p-tau181 and apolipoprotein

E (APOE) ε4 in predicting syndromal conversion of early AD among CU

andMCI subjects.

2 METHODS

2.1 Participants and cognitive assessment

All participants in this cohort studywere enrolled from theAlzheimer’s

Disease Neuroimaging Initiative (ADNI) database. ADNI is a longitu-

dinal multicenter study that provides clinical data, imaging, genetic,

and biochemical biomarkers information for the early detection and
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CAI ET AL. 4989

tracking of AD. More detailed information could be sought at http://

adni.loni.usc.edu.25

In our study, the CU andMCI subjects from the ADNIGrandOppor-

tunity/ADNI 2 study were included in the study if the ADNI database

provides the following data: (1) baseline plasma p-tau181 concentra-

tion, (2) baseline plasma NfL concentration, (3) baseline CSF Aβ1-42
and CSF p-tau181 levels, and (4) baseline structural MRI scans. Fur-

thermore, to monitor the progression of the patients, all the patients

underwent up to 4-year follow-up and the clinical assessments for

determination of conversion were done annually. If the subjects were

diagnosed as CU or MCI and diagnosis did not change at all available

time points (0–48 months), we defined them as CU/MCI stable (C−). If

the subjects were diagnosed as CU at baseline but converted toMCI or

diagnosed asMCI at baseline but converted todementiawithin 4 years,

and without reversion reported at any available follow-up, we defined

the subjects as CU-to-MCI converter or MCI-to-dementia converter

(C+). Information on the change of subjects’ diagnoses was down-

loaded from theADNIwebsite (DXSUM_PDXCONV_ADNIALL.csv and

BLCHANGE.CSV).

Following the ADNI protocol, the CU subjects were diagnosed with

a Mini-Mental State Examination (MMSE) score between 24 and 30

and a global Clinical Dementia Rating (CDR) of 0. And the MCI sub-

jects were diagnosed with an MMSE score between 24 and 30 and

a CDR of 0 or 0.5, with a memory box score of at least 0.5. The

MCI subjects were also diagnosed with objective evidence of mem-

ory impairment, as determined by standardizedmemory tests, butwith

normal performance on other cognitive tests and preserved daily func-

tioning. The dementia subjects were diagnosed with an MMSE score

between 20 and 26 and aCDRof 1 or higher. The subjects with demen-

tia had to meet the criteria of the National Institute of Neurological

and Communicative Disorders and Stroke—Alzheimer’s Disease and

Related Disorders Association for probable AD.26 A delayed recall

of one paragraph from the Logical Memory II subscale of the Wech-

sler Memory Scale—Revised (maximum score of 25) was used for the

memory criterion,27 with cutoff scores based on education as follows:

normal subjects≥9 for 16 years of education,≥5 for 8–15 years of edu-

cation, and ≥3 for 0–7 years of education. The scores for subjects with

MCI and subjects with AD were ≤8 for 16 years of education, ≤4 for

8–15 years of education, and≤2 for 0–7 years of education.28 Subjects

having any significant neurological disease other than suspected incip-

ient AD, such as Parkinson’s disease, Huntington’s disease, or known

structural brain abnormalities including multiple lacunes or lacunes

in a critical memory structure, infarction, or other focal lesions were

excluded from our study. TheMontreal Cognitive Assessment (MoCA)

score was also collected to assess cognitive impairment severity.

2.2 Fluid biomarkers sampling and processing

Blood sampling and processing were conducted by the ADNI proto-

col. Plasma p-tau181 and plasma NfL concentration were analyzed by

the Single Molecule Array (SiMoA) technique as the previous report.9

In addition, the CSF Aβ1-42, t-tau, and p-tau181 were measured by

Innogenetics/Fujirebio AlzBio3 immunoassay kits and the xMAP

Luminex platform in the ADNI Biomarker Core laboratory at the

University of Pennsylvania Medical Center.29 To assign a biological

phenotype to each individual at baseline, previously defined thresholds

were applied; less than 192 pg/mL for CSF Aβ1-42 are defined as A+,

and greater than 23 pg/mL for CSF p-tau181 are defined as T+.
30

2.3 Neuroimaging

The 3D T1-weighted, T2-weighted, and FLAIR sequences were used

for visual rating and neuroimaging analyses. The AD-RAI was gener-

ated by AccuBrain and calculated according to the atrophy degree

of AD-related brain structures, including subcortical structures (e.g.,

hippocampus), ventricles, and cortical lobar regions. It was derived

from an in-house training database, indicating the similarity in atro-

phy pattern between the subject’s brain and those with AD dementia

(ranging from 0 to 1). The details of the development of AD-RAI were

described in our previous report.19,20 Furthermore, we also compared

AD-RAI with the traditional atrophy features including hippocampal

volume (HV), and hippocampal fraction (HF, bilateral absolute HV over

intracranial volume ratio), intracranial volume (ICV), which were all

automatically generated by AccuBrain.

2.4 Statistical analysis

Subjects were grouped based on three categories including baseline

CSF Aβ1-42 (A), CSF p-tau181 concentration (T), and conversion within

4 years (C). For example, those subjectswithCSFAβ1-42 positive (<192
pg/mL), CSF p-tau181 positive (>23 pg/mL) and converted from CU to

MCI or fromMCI to ADwithin 4 years without any reversion reported

were defined as A+T+C+, and others defined as not A+T+C+.

Categorical variables were described as numbers (proportion),

and continuous variables as medians (interquartile range, IQR) or

means ± standard deviation (SD). χ2 tests or Fisher’s exact tests were
used for categorical variables and Student’s t-tests or Mann–Whitney

U tests for continuous variables. The effect size of image biomarkers

andplasmabiomarkerswas estimatedby calculatingCohen’s d, and the

cutoffs for the interpretation of Cohen’s d are 0.2 (small), 0.5 (medium),

and 0.8 (large).23

Univariate logistics regression was conducted to explore the asso-

ciation between outcomes and image biomarkers and blood-based

biomarkers. The odds ratios (OR) and 95% confidence intervals (CIs)

were obtained. Then we adjusted age, gender, education, and base-

line MoCA score of each subjects with their image biomarkers, and

plasma biomarkers, respectively, and used A+T+C+ or not as depen-

dent variable to further explore the association between biomarkers

and outcome.

We compared the prediction performances of the blood-based

and MRI-based neurodegeneration biomarkers on top of clinical risk

factors. First, we built a clinical model including age, gender, edu-

cation, and MoCA score to evaluate the predicting ability of simple
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characteristics and cognition assessment by multivariable logistic

regression. AD-RAI or plasma NfL was then added on top of the clini-

cal model to evaluate the performance metrics in predicting A+T+C+.

Afterwards, we further combined the neurodegeneration biomarkers

with the clinical model and plasma p-tau181, and compared the pre-

diction performances. The models were trained and validated with

10-fold cross-validation. The receiver operating characteristic (ROC)

analysis and the area under the ROC curve (AUC) were employed to

evaluatemodel identification performance. BasedonDelong’smethod,

p < 0.05 was considered statistically significant when comparing AUC

values.31 The sensitivity and specificity of the optimal cut-off point

based on the Youden Index (J) of eachmodelwere reported to evaluate

the diagnostic accuracy of different measures.32 The reclassification

was assessed using net reclassification index (NRI) and integrated dis-

crimination index (IDI).33 (Table S1) Since in our cohort the number of

positive and negative cases was imbalanced, we used the arithmetic

mean of sensitivity and specificity, to calculate the balanced accuracy

instead of the standard accuracy.34 We defined the best model as

which included the fewest predictors and highest AUC. Furthermore,

althoughAPOE ε4 is the strongest genetic risk factor for AD, it has eth-
ical issueswhen applying it in clinical practice. Irrespective of this issue,

we also explored whether using the APOE ε4 genotype (ε4 carrier vs.

non-carrier) improved the overall performance of the model. The anal-

ysis between groups and the performance of the models was trained

and validated among CU andMCI groups separately.

In addition to the above analyses that categorized groups into

A+T+C+ versus non-A+T+C, we also performed similar analyses with

following groupings: (1) A+T+ versus non-A+T+ (Tables S2, S3, S4,

S5, S6), (2) A+T+C+ versus A+T+C− (Table S7), and (3) A+C+ versus

A+C− (Table S8).

All analyses were performed with SPSS version 26.0 and R soft-

ware (version 4.1.3). Two-sided p < 0.05 was considered statistically

significant.

3 RESULTS

3.1 Participants

From June 2010 to December 2013, 589 subjects (mean [SD] age, 72.2

[6.9] years; 314 males [53.3%]) were enrolled in the ADNI database.

226 (38.4%) subjects were diagnosed as CU at baseline, which include

125 subjects with normal cognition and 91 subjects with subjective

cognitive decline (SCD), while 363 (61.6%) subjects were diagnosed as

MCI. The clinical demographic and characteristics are shown in Table 1,

Table S9, and Figure S1.

3.2 Biomarkers across diagnostic groups

The clinical demographic and characteristics of the A+T+C+ and

non-A+T+C+ subjects are shown in Table 1. The CU subjects who

were A+T+C+ were older (p = 0.003), with lower MoCA scores at

baseline (p = 0.050) compared with those who were not A+T+C+.

Among the CU group, only AD-RAI was significantly higher among

A+T+C+ subjects with a large effect size (p = 0.004, Cohen’s

d = 1.064). The plasma NfL was marginally higher for the A+T+C+

subjects with a small effect size (p = 0.019, Cohen’s d = 0.314). There

were no differences in all other imaging biomarkers or plasma p-tau181

concentration between the A+T+C+ and the non-A+T+C+ CU sub-

jects, with corresponding small to medium effect sizes (Table 1 and

Figure 1A). ThoseMCI subjectswhowereA+T+C+ had lower baseline

MMSE (p< 0.001) andMoCA (p< 0.001) scores. AmongMCI subjects,

all the imaging biomarkers and both plasma p-tau181 and plasma NfL

were significantly different between A+T+C+ and not A+T+C+ sub-

jects (p < 0.001). Among them, both AD-RAI (Cohen’s d = 0.960) and

plasma p-tau181(Cohen’s d = 0.985) showed large effect sizes of group

difference (Table 1 and Figure 1B). Spearman’s correlation showed no

significant correlation between AD-RAI and plasma NfL among CU

subjects (rho = −0.03, p = 0.671), and there was a weak but signifi-

cant correlation between AD-RAI and plasmaNfL amongMCI subjects

(rho= 0.20, p= 0.0001) (Figure S2).

3.3 Association between neurodegeneration
biomarkers and syndromal conversion

Multivariate logistic regression showed that higher AD-RAI was asso-

ciated with A+T+C+ among CU subjects independent of age, gender,

education, and baseline MoCA score (adjusted OR [aOR] 24.225; 95%

CI, 2.785–210.754; p= 0.004, Table 2, model 1). Additional adjustment

with respect to APOE ε4 genotype also yielded similar findings to that

of model 1 above (Table 2, model 2).

AmongMCI subjects, AD-RAI (aOR 10.016; 95%CI, 4.367–22.972),

HV, HF, plasma p-tau181, and plasma NfL all showed significant associ-

ations with A+T+C+ (p < 0.001, Table 3, model 1). Additional adjust-

ment with respect to APOE ε4 genotype also yielded similar findings

to that of model 1 above, except that the association between plasma

NfL and A+T+C+ became insignificant (p = 0.103) (Table 3, model 2).

Overall, multivariate logistic regression showed that among all inde-

pendent variables, AD-RAI had the highest aOR in the associationwith

A+T+C+ among CU orMCI subjects.

3.4 Model selection and comparison
for syndromal conversion

Wenext examined the accuracies of different biomarkers in predicting

A+T+C+ on top of the clinical model (including age, gender, education,

and baseline MoCA score). Adding plasma p-tau181 on top of the clin-

ical model improved the AUC from 0.615 to 0.659 and from 0.712 to

0.788, among CU and MCI, respectively. When we added AD-RAI on

top of the clinical model, AUC improved from 0.615 to 0.768 and from

0.712 to 0.779 amongCUandMCI subjects, respectively. TheAUCwas

the lowest with adding plasma NfL on top of the clinical model when

comparedwith adding plasma p-tau181 or AD-RAI (Figure 2).
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TABLE 1 Cohort characteristics.

CU (n= 226) MCI (n= 363)

Characteristics

A+T+ and

converted toMCI

(n= 11)

Non-A+T+ or not

converted toMCI

(n= 215) p-Value

A+T+ and

converted to AD

dementia (n= 85)

Non-A+T+ or not

converted to AD

dementia (n= 278) p-Value

Age (years), mean (SD) 78.4± 5.9 72.4± 5.8 0.003 72.9± 6.7 71.5± 7.5 0.051

Male (n [%]) 6(54.5) 102(47.4) 0.439 46(54.1) 160(57.6) 0.331

Education (years), mean (SD) 16.0± 2.0 16.8± 2.5 0.181 16.3± 2.6 16.2± 2.6 0.654

MMSE, mean (SD) 28.3± 1.8 29.1± 1.2 0.082 27.2± 1.8 28.3± 1.6 <0.001

MoCA, mean (SD) 24.1± 2.8 25.9± 2.4 0.050 21.5± 2.7 23.7± 2.9 <0.001

APOE ε4 genotype (n [%]) 5(45.5) 61(28.4) 0.306 64(75.3) 109(39.2) <0.001

AD-RAI, mean (SD) 0.5± 0.3 0.2± 0.2 0.004 0.7± 0.3 0.4± 0.3 <0.001

HV 6.2± 0.8 6.4± 0.7 0.593 5.5± 0.8 6.1± 0.9 <0.001

HF 0.4± 0.1 0.4± 0.1 0.083 0.4± 0.1 0.4± 0.1 <0.001

ICV 1516.9± 101.1 1480.6± 149.5 0.308 1510.9± 161.5 1502.1± 152.3 0.994

CSF Aβ 42 (pg/mL), mean (SD) 198.6± 142.5 211.4± 109.7 <0.001 132.3± 22.3 211.1± 178.5 <0.001

CSF p-tau181(pg/mL), mean

(SD)

45.3± 18.4 34.2± 17.8 0.024 63.9± 25.7 35.5± 20.7 <0.001

CSF t-tau(pg/mL), mean (SD) 74.9± 48.0 65.9± 36.3 0.542 128.4± 64.3 79.3± 58.3 <0.001

Plasma p-tau181(pg/mL),

mean (SD)

18.8± 9.1 14.8± 10.3 0.066 26.4± 15.2 16.0± 8.8 <0.001

PlasmaNfL, (pg/mL), mean

(SD)

41.9± 13.3 34.5± 23.5 0.019 46.2± 18.8 36.8± 19.5 <0.001

Note: Values aremean± standard deviation or numbers (%).

Abbreviations: Aβ, amyloid β; AD-RAI, AD resemblance atrophy index; APOE, Apolipoprotein E; CSF, cerebrospinal fluid; HF, hippocampus fraction; HV, hip-

pocampus volume; ICV, intracranial volume;MMSE,Mini-Mental State Examination; MoCA,Montreal Cognitive Assessment; NfL, neurofilament light chain;

SD, standard deviation.

F IGURE 1 Effect sizes of image biomarkers and plasma biomarker levels change by ATC groups ([A] CU group, n= 226, A+T+C+ n= 11, [B]
MCI subgroup, n= 363, A+T+C+ n= 85). The effect size of group differences was estimated by calculating Cohen’s d, in which the dependent
variable is the A+T+C+ or not and the independent variable was the log (transformed) biomarkers. The error bars represent the 95%CIs. AD-RAI,
AD resemblance atrophy index; CU, cognitively unimpaired; HV, hippocampus volume; HF, hippocampus fraction; ICV, intracranial volume;MCI,
mild cognitive impairment; NfL, neurofilament light chain.
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4992 CAI ET AL.

TABLE 2 Univariate andmultivariate logistic regression between biomarkers and A+T+C+ or not among CU subjects (n= 226).

Multivariate logistic regression

Univariate logistic regression Model 1a Model 2b

Variables CrudeOR (95%CI) p-Value AdjustedOR (95%CI) p-value AdjustedOR (95%CI) p-Value

Age 1.187 (1.062–1.327) 0.002 N/A N/A N/A N/A

Gender 1.329 (0.394–4.488) 0.646 N/A N/A N/A N/A

Education 0.290 (0.882–0.698) 0.290 N/A N/A N/A N/A

MoCA 0.760 (0.595–0.972) 0.029 N/A N/A N/A N/A

APOE ε4
genotype

2.104 (0.619–7.150) 0.233 3.786 (0.945–15.172) 0.060 N/A N/A

AD-RAI 21.196 (3.013–149.096) 0.002 24.225 (2.785–210.754) 0.004 42.318 (3.865–463.285) 0.002

HV 0.666 (0.281–1.575) 0.355 0.691 (0.250–1.911) 0.447 0.623 (0.212–1.834) 0.390

HF 0.000 (0.000–2.090) 0.064 0.000 (0.000–18.512) 0.106 0.000 (0.000–3.900) 0.071

ICV 1.002 (0.998–1.006) 0.427 1.003 (0.997–1.009) 0.360 1.003 (0.997–1.010) 0.297

Plasma p-tau181 1.027 (0.984–1.072) 0.218 1.031 (0.978–1.087) 0.257 1.027 (0.971–1.086) 0.347

PlasmaNfL 1.008 (0.992–1.024) 0.332 0.999 (0.972–1.027) 0.939 1.002 (0.975–1.030) 0.873

Abbreviations: APOE, apolipoprotein E; AD-RAI, AD resemblance atrophy index; CI, confidence interval; HF, hippocampus fraction;HV, hippocampus volume;

ICV, intracranial volume;MoCA,Montreal Cognitive Assessment; NfL, neurofilament light chain; OR, odds ratio.
aAdjusted for variables included age, gender, education, and baselineMoCA score.
bAdjusted for variables contained inmodel 1 plus APOE ε4 genotype.

TABLE 3 Univariate andmultivariate logistic regression between biomarkers and A+T+C+ or not amongMCI subjects (n= 363)

Multivariate logistic regression

Univariate logistic regression Model 1a Model 2b

Variables CrudeOR (95%CI) p-value AdjustedOR (95%CI) p-value AdjustedOR (95%CI) p-value

Age 1.025 (0.992–1.060) 0.143 N/A N/A N/A N/A

Gender 0.870 (0.534–1.418) 0.870 N/A N/A N/A N/A

Education 1.021 (0.930–1.121) 0.660 N/A N/A N/A N/A

MoCA 0.759 (0.690–0.835) <0.001 N/A N/A N/A N/A

APOE ε4
genotype

4.725 (2.730–8.178) <0.001 4.841 (2.665–8.791) <0.001 N/A N/A

AD-RAI 13.353 (6.264–28.464) <0.001 10.016 (4.367–22.972) <0.001 9.850 (4.141–23.430) <0.001

HV 0.468 (0.345–0.633) <0.001 0.527 (0.373–0.744) <0.001 0.578 (0.402–0.830) 0.003

HF 0.000 (0.000–0.001) <0.001 0.000 (0.000–0.002) <0.001 0.000 (0.000–0.004) <0.001

ICV 1.000 (0.999–1.002) 0.656 1.002 (1.000–1.004) 0.117 1.002 (1.000–1.005) 0.057

Plasma p-tau181 1.096 (1.065–1.127) <0.001 1.081 (1.050–1.112) <0.001 1.064 (1.033–1.095) <0.001

PlasmaNfL 1.022 (1.010–1.034) <0.001 1.019 (1.005–1.033) 0.007 1.011 (0.998–1.025) 0.103

Abbreviations: APOE, apolipoprotein E; AD-RAI, AD resemblance atrophy index; CI, confidence interval; HF, hippocampus fraction;HV, hippocampus volume;

ICV, intracranial volume;MoCA,Montreal Cognitive Assessment; NfL, neurofilament light chain; OR, odds ratio.
aAdjusted for variables included age, gender, education, and baselineMoCA score.
bAdjusted for variables contained inmodel 1 plus APOE ε4 genotype.

We then added AD-RAI on top of the model combining clinical fea-

tures and plasma p-tau181, and attained AUCs of 0.786 and 0.828

among CU and MCI subjects, respectively. In contrast, when combin-

ing plasma NfL with the same model, the AUCs were 0.642 and 0.782

among CU and MCI subjects, respectively, which were significantly

lower than that obtainedwith AD-RAI (Figure 2).

The model combining clinical features, plasma p-tau181, and APOE

ε4 genotype achieved AUC of 0.648 among CU, and 0.815 among MCI

subjects. When we further added AD-RAI on top of the model com-

bining clinical features, APOE ε4 genotype, and plasma p-tau181, the

AUC improved from 0.648 to 0.832 among CU, and from 0.815 to 0.

853 among MCI subjects. When we combined plasma NfL with the
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CAI ET AL. 4993

F IGURE 2 ROC for themodel to predict A+T+C+. This figure shows the ROC curves of different models for predicting those subjects who are
already harboring A+T+ andwill progress to the next sydromal stage (i.e., CU-to-MCI converters andMCI-to-dementia converters) within 4 years.
(A,B) The ROC curves among CU subjects (n= 226). (C,D) The ROC curves amongMCI subjects. The clinical model included age, gender, education,
and baselineMoCA score. AD-RAI, AD resemblance atrophy index; CU, cognitively unimpaired;MCI, mild cognitive impairment; MoCA,Montreal
Cognitive Assessment; NfL, neurofilament light chain; ROC, receiver operating characteristic.

same model, the AUCs were only 0.650 and 0.805 among CU andMCI

subjects, respectively (Table 4).

Note further that we also compared AD-RAI with other con-

ventional MRI-based neurodegeneration biomarkers (i.e., HV, HF) in

predicting A+T+C+. AD-RAI outperformed other conventional MRI-

based biomarkers in predicting A+T+C+ (Table 4).

Overall among the various combinations, the best model in predict-

ingA+T+C+was combining clinicalmodelwith plasmap-tau181, APOE

ε4 genotype, and AD-RAI. The AUC (95% CI), sensitivity, specificity,

balanced accuracy were 0.832 (0.719–0.945), 0.900, 0.666, 0.783, and

0.853 (0.808–0.898), 0.821, 0.794, and 0.808 for CU andMCI subjects,

respectively (Table 4).

Further analyses using other groupings also yielded similar find-

ings, that AD-RAI outperformed plasma NfL in predicting A+T+C+

from A+T+C− (Table S7) or A+C+ from A+C− (Table S8) among

CU and MCI subjects, and the best model was one that com-

bined clinical model with plasma p-tau181, APOE ε4 genotype, and

AD-RAI.
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4 DISCUSSION

In this study, we compared the performance of AD-RAI versus that of

a blood-based neurodegeneration biomarker (i.e., plasma NfL) when

incorporated into a model combining clinical model, plasma p-tau181,

and APOE ε4 genotype in predicting the 4-year cognitive decline risk

of A+T+ CU or MCI subjects . The effect size of AD-RAI between

A+T+C+ and non-A+T+C+ subjects was double of that of plasma

NfL in differentiating between the groups. Moreover, logistic regres-

sion showed a greater association between AD-RAI and A+T+C+

than plasma NfL. We found that AD-RAI outperformed plasma NfL in

predicting conversion to the next syndromal stage among early AD on

top of clinical factors and plasma p-tau181.

A plausible reason explaining the superiority of AD-RAI over plasma

NfL included that AD-RAI reflects the severity of the loss of specific

brain tissue (e.g., neuropil in the cortex) that have strong correlation

with cognitive function.23,35–37 In addition, AD-RAI reflects another

dimension of neurodegeneration, which is the degree of similarity

in the pattern of brain atrophy to that of AD subjects. In contrast,

plasma NfL reflects mainly axonal loss,38 which is less specific than

AD-RAI since its level could not reflect the unique pattern of AD-

related brain atrophy. Our results were consistent with that of another

study showing that MRI-based HV, which reflects neuropil quantity,

was the strongest predictor for cognitive decline when compared with

plasma-based neurodegeneration biomarkers (e.g., NfL) among SCD

subjects.14 Note that the present study also showed that AD-RAI out-

performed traditional volumetric hippocampal measures in predicting

syndromal conversion. This finding was again similar to a previous

study.20

We observed that not only was plasma NfL inferior to AD-RAI in

predicting syndromal conversion, it also had no additional predictive

value in predicting syndromal conversion when added to the model

combining clinical features and plasma p-tau181. This result contra-

dicted a previous study showing that plasma NfL had additional value

in predicting SCD-to-MCI or dementia conversion.14 This discrepancy

may also be explained by differences in the pathology profiles of the

subjects. The previous study did not define the AD pathological profile

of the subjects (i.e., A+T+),whereas in thepresent studyweconsidered

A+T+ status as defined by CSF biomarkers for the outcomes. Plasma

NfL was reported to be an AD-nonspecific biomarker for neuronal

injury independent of Aβ pathology.39,40 In the previous study, 20% of

converters were diagnosed as non-AD dementia. In contrast, we only

included AD dementia and excluded subjects with neurological condi-

tions other than AD incipient. The concentration of plasma NfL is also

elevated in frontotemporal dementia,41 Parkinson’s disease,42 cere-

bral small vessel disease.43 The underlying disease pathologymay thus

influence the association between plasmaNfL and cognitive decline.

We observed that 30.1% of CU subjects and 54.8% of MCI sub-

jects were harboring A+T+ and only 15.9% of preclinical AD and

41.1% prodromal AD showed syndromal conversion within 4 years.

The proportion of A+T+ among CUwas higher in our study than previ-

ous studies where the reported prevalence was around 7.2%−12.5%,

among which roughly 30%–80% progressed in 5–10 years.44 This

discrepancy may be caused by difference in methods for detecting

A+T+. Previous study used PET to evaluate the amyloid and tau bur-

den, whereas we used CSF biomarkers in the present study. It has been

reported that changes in amyloid load and tauopathymeasured by PET

exceeded the respective thresholds later than CSF biomarkers over

AD disease course, and was associated with faster progression of clin-

ical symptoms.45 This probably explains why previous study reported

a lower prevalence but a greater conversion rate among CU subjects

than us. On the other hand, the proportion and progression of A+T+

among MCI subjects are in line with previous reports, which showed a

prevalence varying from 28% to 60% among MCI subjects with about

40%–50% progressed to AD dementia within a relatively short follow-

up period.4,46,47 These findings highlighted the need to not only use

biomarkers for Aβ and tauopathy to define AD, but also consider uti-

lizing neurodegeneration biomarkers to predict the speed of cognitive

decline. Knowing the risk of syndromal conversion among preclini-

cal or prodromal AD will likely affect the management strategies and

treatment responses to interventional drugs in clinical trials.

Adding AD-RAI on top of clinical features and plasma p-tau181

achieved ahigh sensitivity of around90%amongbothCUandMCI sub-

jects. Such a high sensitivity will ensure detection of the majority of

A+T+C+ subjects. However, the specificity was around 60%.Hence, in

situations where confirming A+T+ status is essential (e.g., administra-

tion of anti-amyloid therapy, recruitment into AD-specific preventive

clinical trials), further tests (e.g., PET, CSF assays) need to be arranged

to confirm Aβ and tau status.
The present study also showed that combining APOE ε4 genotype

would increase the model performance in predicting syndromal con-

version. Several studies have shown similar results that by combining

APOE ε4 with plasma p-tau181 or cortical atrophy, predictive value

of conversion increased further.48,49 Besides the link between APOE

ε4 and amyloid-β peptide aggregation and clearance, APOE ε4 may

also relate to blood-brain barrier damage, influence glial reactions,

promote tau-induced neurodegeneration and atrophy, which all may

lead to cognitive impairment.50 Furthermore, we found that APOE ε4
achieved thebest performance indifferentiatingA+T+amongbothCU

and MCI. It is also noteworthy that among CU subjects, both plasma

p-tau181 and AD-RAI did not yield any improvement in the predic-

tion model when combined with APOE ε4. APOE ε4 genotype is a

strong indicator of Aβ burden, which is usually considered to be the

first pathological change in the disease cascade.51,52 APOE ε4 allele

carriers have a high rate of conversion to PiB-positive that happens

years before the onset of clinical symptoms.53 APOE ε4 genotype is,

therefore, more sensitive to the early pathological change than tau or

neurodegeneration biomarkers in the asymptomatic phase. Hence, for

classification ofA+T+ amongCUsubjects,model including only clinical

features and APOE ε4 genotype already performed very well. How-

ever, genetic testing poses certain ethical, social, actuarial, and legal

problems.54 The clinical application of APOE εƐ4 should be taken with

caution regarding the difficulties of disclosing testing results to the

subjects and their relatives.
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AD-RAI requires only 3D T1/FLAIR MRI sequences and the soft-

ware takes about 10 min to generate the results back to the end user

after the images are being uploaded to the cloud platform. Nonethe-

less, it still requires an MRI scanner, which is less widely applicable

(e.g., contraindications of MRI include subjects with metallic implants

and claustrophobia) and probably more costly when compared with

blood-based biomarkers. Note however that on the other hand, MRI

can provide other useful information (e.g., presence of cerebrovascular

lesions) that may affect the prognosis and management but cannot be

captured by current blood-based technologies. Overall, our study pro-

vides important data on the additional value of adding MRI or AD-RAI

so that clinicians or researchers can decide whether AD-RAI should be

usedornot basedon thepurpose and resources available in aparticular

circumstance.

Our study has several limitations. First, although we used 10-fold

validation to reduce the test error rate of our model, further valida-

tion of our model is needed in a separate cohort. Second, our sample

was of moderate size, especially among CU subjects. More CU sub-

jects will need to be recruited in future study. Third, since plasma

Aβ42/Aβ40 was not available in the ADNI database, we were unable

to explore its prediction value. Note however that previous study

showed that removing plasma Aβ42/Aβ40 from a model including

plasma p-tau181 and brief cognitive tests did not affect the perfor-

mance in predicting AD syndromal conversion.48 Fourth, apart from

measures of AD neurodegeneration, there are other potential factors,

in particular vascular factors (e.g., presence of cerebral small vessel

disease, blood pressure) that may also affect the rate of cognitive

decline.55 Fifth, biofluid biomarkers measurements may differ with

different processing methods. Further exploration will need to deter-

mine whether such variations may affect the predictive performance

of plasma NfL. Last, apart from plasma NfL, we did not compare AD-

RAI with other neurodegeneration biomarkers, such as plasma t-tau or

GFAP, plasma brain-derived tau,56 electroencephalography (EEG), or

magnetoencephalography (MEG). Note however that previous studies

have already shown the superiority of plasma NfL over plasma t-tau in

predicting cognitive decline.13 While EEG/MEG can detect the change

of brain wave patterns that are indicative of AD, their uses as non-

invasive means to obtain neurodegeneration biomarkers for diagnosis

and prognostication warrant further explorations.57,58

4.1 Conclusion

AD-RAI outperformed plasma NfL in predicting syndromal conversion

among preclinical and prodromal AD subjects. Combination of clinical

features, plasmap-tau181, APOE ε4genotype, andAD-RAI provides the
best model in identifying early AD subjects with high risk of conver-

sion to next syndromal stage. The validity of this model needs to be

confirmed in a separate larger cohort.
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